1,550 research outputs found

    Translational genetic modelling of 3D craniofacial dysmorphology: elaborating the facial phenotype of neurodevelopmental disorders through the prism of schizophrenia

    Get PDF
    Purpose of Review: In the context of human developmental conditions, we review the conceptualisation of schizophrenia as a neurodevelopmental disorder, the status of craniofacial dysmorphology as a clinically accessible index of brain dysmorphogenesis, the ability of genetically modified mouse models of craniofacial dysmorphology to inform on the underlying dysmorphogenic process and how geometric morphometric techniques in mutant mice can extend quantitative analysis. Recent Findings: Mutant mice with disruption of neuregulin-1, a gene associated meta-analytically with risk for schizophrenia, constitute proof-of-concept studies of murine facial dysmorphology in a manner analogous to clinical studies in schizophrenia. Geometric morphometric techniques informed on the topography of facial dysmorphology and identified asymmetry therein. Summary: Targeted disruption in mice of genes involved in individual components of developmental processes and analysis of resultant facial dysmorphology using geometric morphometrics can inform on mechanisms of dysmorphogenesis at levels of incisiveness not possible in human subjects

    Craniofacial dysmorphology in 22q11.2 deletion syndrome by 3D laser surface imaging and geometric morphometrics: illuminating the developmental relationship to risk for psychosis

    Get PDF
    Persons with 22q11.2 deletion syndrome (22q11.2DS) are characterized inter alia by facial dysmorphology and greatly increased risk for psychotic illness. Recent studies indicate facial dysmorphology in adults with schizophrenia. This study evaluates the extent to which the facial dysmorphology of 22q11.2DS is similar to or different from that evident in schizophrenia. Twenty-one 22q11.2DS-sibling control pairs were assessed using 3D laser surface imaging. Geometric morphometrics was applied to 30 anatomical landmarks, 480 geometrically homologous semi-landmarks on curves and 1720 semi-landmarks interpolated on each 3D facial surface. Principal component (PC) analysis of overall shape space indicated PC2 to strongly distinguish 22q11.2DS from controls. Visualization of PC2 indicated 22q11.2DS and schizophrenia to be similar in terms of overall widening of the upper face, lateral displacement of the eyes/orbits, prominence of the cheeks, narrowing of the lower face, narrowing of nasal prominences and posterior displacement of the chin; they differed in terms of facial length (increased in 22q11.2DS, decreased in schizophrenia), mid-face and nasal prominences (displaced upwards and outwards in 22q11.2DS, less prominent in schizophrenia); lips (more prominent in 22q11.2DS; less prominent in schizophrenia) and mouth (open mouth posture in 22q11.2DS; closed mouth posture in schizophrenia). These findings directly implicate dysmorphogenesis in a cerebral-craniofacial domain that is common to 22q11.2DS and schizophrenia and which may repay further clinical and genetic interrogation in relation to the developmental origins of psychotic illness

    The Interaction of Genetic Background and Mutational Effects in Regulation of Mouse Craniofacial Shape.

    Get PDF
    Inbred genetic background significantly influences the expression of phenotypes associated with known genetic perturbations and can underlie variation in disease severity between individuals with the same mutation. However, the effect of epistatic interactions on the development of complex traits, such as craniofacial morphology, is poorly understood. Here, we investigated the effect of three inbred backgrounds (129X1/SvJ, C57BL/6J, and FVB/NJ) on the expression of craniofacial dysmorphology in mice (Mus musculus) with loss of function in three members of the Sprouty family of growth factor negative regulators (Spry1, Spry2, or Spry4) in order to explore the impact of epistatic interactions on skull morphology. We found that the interaction of inbred background and the Sprouty genotype explains as much craniofacial shape variation as the Sprouty genotype alone. The most severely affected genotypes display a relatively short and wide skull, a rounded cranial vault, and a more highly angled inferior profile. Our results suggest that the FVB background is more resilient to Sprouty loss of function than either C57 or 129, and that Spry4 loss is generally less severe than loss of Spry1 or Spry2 While the specific modifier genes responsible for these significant background effects remain unknown, our results highlight the value of intercrossing mice of multiple inbred backgrounds to identify the genes and developmental interactions that modulate the severity of craniofacial dysmorphology. Our quantitative results represent an important first step toward elucidating genetic interactions underlying variation in robustness to known genetic perturbations in mice

    Pbx loss in cranial neural crest, unlike in epithelium, results in cleft palate only and a broader midface.

    Get PDF
    Orofacial clefting represents the most common craniofacial birth defect. Cleft lip with or without cleft palate (CL/P) is genetically distinct from cleft palate only (CPO). Numerous transcription factors (TFs) regulate normal development of the midface, comprising the premaxilla, maxilla and palatine bones, through control of basic cellular behaviors. Within the Pbx family of genes encoding Three Amino-acid Loop Extension (TALE) homeodomain-containing TFs, we previously established that in the mouse, Pbx1 plays a preeminent role in midfacial morphogenesis, and Pbx2 and Pbx3 execute collaborative functions in domains of coexpression. We also reported that Pbx1 loss from cephalic epithelial domains, on a Pbx2- or Pbx3-deficient background, results in CL/P via disruption of a regulatory network that controls apoptosis at the seam of frontonasal and maxillary process fusion. Conversely, Pbx1 loss in cranial neural crest cell (CNCC)-derived mesenchyme on a Pbx2-deficient background results in CPO, a phenotype not yet characterized. In this study, we provide in-depth analysis of PBX1 and PBX2 protein localization from early stages of midfacial morphogenesis throughout development of the secondary palate. We further establish CNCC-specific roles of PBX TFs and describe the developmental abnormalities resulting from their loss in the murine embryonic secondary palate. Additionally, we compare and contrast the phenotypes arising from PBX1 loss in CNCC with those caused by its loss in the epithelium and show that CNCC-specific Pbx1 deletion affects only later secondary palate morphogenesis. Moreover, CNCC mutants exhibit perturbed rostro-caudal organization and broadening of the midfacial complex. Proliferation defects are pronounced in CNCC mutants at gestational day (E)12.5, suggesting altered proliferation of mutant palatal progenitor cells, consistent with roles of PBX factors in maintaining progenitor cell state. Although the craniofacial skeletal abnormalities in CNCC mutants do not result from overt patterning defects, osteogenesis is delayed, underscoring a critical role of PBX factors in CNCC morphogenesis and differentiation. Overall, the characterization of tissue-specific Pbx loss-of-function mouse models with orofacial clefting establishes these strains as unique tools to further dissect the complexities of this congenital craniofacial malformation. This study closely links PBX TALE homeodomain proteins to the variation in maxillary shape and size that occurs in pathological settings and during evolution of midfacial morphology

    The face, beauty, and symmetry: Perceiving asymmetry in beautiful faces

    Get PDF
    The relationship between bilateral facial symmetry and beauty remains to be clarified. Here, straight head-on photographs of “beautiful” faces from the collections of professional modeling agencies were selected. First, beauty ratings were obtained for these faces. Then, the authors created symmetrical left-left and right-right composites of the beautiful faces and asked a new group of subjects to choose the most attractive pair member. “Same” responses were allowed. No difference between the left-left and right-right composites was revealed but significant differences were obtained between “same” and the left-left or right-right. These results show that subjects detected asymmetry in beauty and suggest that very beautiful faces can be functionally asymmetrical

    Sh3pxd2b Mice Are a Model for Craniofacial Dysmorphology and Otitis Media

    Get PDF
    Craniofacial defects that occur through gene mutation during development increase vulnerability to eustachian tube dysfunction. These defects can lead to an increased incidence of otitis media. We examined the effects of a mutation in the Sh3pxd2b gene (Sh3pxd2bnee) on the progression of otitis media and hearing impairment at various developmental stages. We found that all mice that had the Sh3pxd2bnee mutation went on to develop craniofacial dysmorphologies and subsequently otitis media, by as early as 11 days of age. We found noteworthy changes in cilia and goblet cells of the middle ear mucosa in Sh3pxd2bnee mutant mice using scanning electronic microscopy. By measuring craniofacial dimensions, we determined for the first time in an animal model that this mouse has altered eustachian tube morphology consistent with a more horizontal position of the eustachian tube. All mutants were found to have hearing impairment. Expression of TNF-α and TLR2, which correlates with inflammation in otitis media, was up-regulated in the ears of mutant mice when examined by immunohistochemistry and semi-quantitative RT-PCR. The mouse model with a mutation in the Sh3pxd2b gene (Sh3pxd2bnee) mirrors craniofacial dysmorphology and otitis media in humans

    Assessment of facial asymmetry before and after the surgical repair of cleft lip in unilateral cleft lip and palate cases

    Get PDF
    This study was performed to assess facial asymmetry in patients with unilateral cleft lip and palate (UCLP) before and after primary lip repair. Three-dimensional facial images of 30 UCLP cases (mean age 3.7 ± 0.8 months) captured 1–2 days before surgery and 4 months after surgery using stereophotogrammetry were analysed. A generic mesh – a mathematical facial mask consisting of thousands of points (vertices) – was conformed on the three-dimensional images. Average preoperative and postoperative conformed facial meshes were obtained and mirrored by reflecting on the lateral plane. Facial asymmetry was assessed by measuring the distances between the corresponding vertices of the superimposed facial meshes. Asymmetries were further examined in three directions: horizontal, vertical, and anteroposterior. Preoperatively, the philtrum and bridge of the nose were deviated towards the non-cleft side. The maximum vertical asymmetry was at the upper lip. The greatest anteroposterior asymmetry was at the alar base and in the paranasal area. The overall facial asymmetry improved markedly after surgery. Residual anteroposterior asymmetry was noted at the alar base, upper lip, and cheek on the cleft slide. In conclusion, dense correspondence analysis provided an insight into the anatomical reasons for the residual dysmorphology following the surgical repair of cleft lip for future surgical consideration

    Computed tomography assessment of peripubertal craniofacial morphology in a sheep model of binge alcohol drinking in the first trimester

    Get PDF
    Identification of facial dysmorphology is essential for the diagnosis of fetal alcohol syndrome (FAS); however, most children with fetal alcohol spectrum disorders (FASD) do not meet the dysmorphology criterion. Additional objective indicators are needed to help identify the broader spectrum of children affected by prenatal alcohol exposure. Computed tomography (CT) was used in a sheep model of prenatal binge alcohol exposure to test the hypothesis that quantitative measures of craniofacial bone volumes and linear distances could identify alcohol-exposed lambs. Pregnant sheep were randomly assigned to four groups: heavy binge alcohol, 2.5 g/kg/day (HBA); binge alcohol, 1.75 g/kg/day (BA); saline control (SC); and normal control (NC). Intravenous alcohol (BA; HBA) or saline (SC) infusions were given three consecutive days per week from gestation day 4-41, and a CT scan was performed on postnatal day 182. The volumes of eight skull bones, cranial circumference, and 19 linear measures of the face and skull were compared among treatment groups. Lambs from both alcohol groups showed significant reduction in seven of the eight skull bones and total skull bone volume, as well as cranial circumference. Alcohol exposure also decreased four of the 19 craniofacial measures. Discriminant analysis showed that alcohol-exposed and control lambs could be classified with high accuracy based on total skull bone volume, frontal, parietal, or mandibular bone volumes, cranial circumference, or interorbital distance. Total skull volume was significantly more sensitive than cranial circumference in identifying the alcohol-exposed lambs when alcohol-exposed lambs were classified using the typical FAS diagnostic cutoff of ≤10th percentile. This first demonstration of the usefulness of CT-derived craniofacial measures in a sheep model of FASD following binge-like alcohol exposure during the first trimester suggests that volumetric measurement of cranial bones may be a novel biomarker for binge alcohol exposure during the first trimester to help identify non-dysmorphic children with FASD

    Craniofacial dysmorphology in Down syndrome is caused by increased dosage of Dyrk1a and at least three other genes

    Get PDF
    Down syndrome (DS), trisomy of human chromosome 21 (Hsa21), occurs in 1 in 800 live births and is the most common human aneuploidy. DS results in multiple phenotypes, including craniofacial dysmorphology, which is characterised by midfacial hypoplasia, brachycephaly and micrognathia. The genetic and developmental causes of this are poorly understood. Using morphometric analysis of the Dp1Tyb mouse model of DS and an associated mouse genetic mapping panel, we demonstrate that four Hsa21-orthologous regions of mouse chromosome 16 contain dosage-sensitive genes that cause the DS craniofacial phenotype, and identify one of these causative genes as Dyrk1a. We show that the earliest and most severe defects in Dp1Tyb skulls are in bones of neural crest (NC) origin, and that mineralisation of the Dp1Tyb skull base synchondroses is aberrant. Furthermore, we show that increased dosage of Dyrk1a results in decreased NC cell proliferation and a decrease in size and cellularity of the NC-derived frontal bone primordia. Thus, DS craniofacial dysmorphology is caused by an increased dosage of Dyrk1a and at least three other genes
    corecore